- topological morphism
- мат.топологический морфизм
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Topological space — Topological spaces are mathematical structures that allow the formal definition of concepts such as convergence, connectedness, and continuity. They appear in virtually every branch of modern mathematics and are a central unifying notion. The… … Wikipedia
Morphism — In mathematics, a morphism is an abstraction derived from structure preserving mappings between two mathematical structures. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear… … Wikipedia
Topological vector space — In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. As the name suggests the space blends a topological structure (a uniform structure to be precise) with the algebraic concept of a… … Wikipedia
Topological K-theory — In mathematics, topological K theory is a branch of algebraic topology. It was founded to study vector bundles on general topological spaces, by means of ideas now recognised as (general) K theory that were introduced by Alexander Grothendieck.… … Wikipedia
Topological pair — In mathematics, more specifically algebraic topology, a pair (X,A) is short hand for an inclusion of topological spaces icolon Ahookrightarrow X. Sometimes i is assumed to be a cofibration. A morphism from (X,A) to (X ,A ) is given by two maps… … Wikipedia
Proper morphism — In algebraic geometry, a proper morphism between schemes is an analogue of a proper map between topological spaces. Contents 1 Definition 2 Examples 3 Properties and characterizations of proper morphisms … Wikipedia
Characterizations of the category of topological spaces — In mathematics, a topological space is usually defined in terms of open sets. However, there are many equivalent characterizations of the category of topological spaces. Each of these definitions provides a new way of thinking about topological… … Wikipedia
Category of topological spaces — In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again… … Wikipedia
Quasi-finite morphism — In algebraic geometry, a branch of mathematics, a morphism f : X rarr; Y of schemes is quasi finite if it satisfies the following two conditions:* f is locally of finite type. * For every point y isin; Y , the scheme theoretic fiber X times; Y k… … Wikipedia
Category of topological vector spaces — In mathematics, the category of topological vector spaces is the category whose objects are topological vector spaces and whose morphisms are continuous linear maps between them. This is a category because the composition of two continuous linear … Wikipedia
Sheaf (mathematics) — This article is about sheaves on topological spaces. For sheaves on a site see Grothendieck topology and Topos. In mathematics, a sheaf is a tool for systematically tracking locally defined data attached to the open sets of a topological space.… … Wikipedia